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ABSTRACT:	This	paper	presents	an	analysis	of	an	automated	essay	scoring	(AES)	system	in	
two	studies	of	live	classroom	use.	First,	in	a	study	of	99	students	in	Texas,	we	show	that	
automated	scores	do	predict	future	performance	on	standardized	tests,	and	that	in-system	
activity	can	be	included	in	a	predictive	model	to	further	improve	accuracy.	Following	that,	
the	results	of	a	five-school	study	in	Maryland	demonstrate	moderate	evidence	that	
automated	essay	scoring	is	correlated	with	school-level	improvement	in	ELA	outcomes.		
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1 INTRODUCTION 

Student	performance	in	writing	is	difficult	to	assess	at	large	scales,	and	targeted	instruction	
based	on	that	assessment	is	even	more	challenging.	Unlike	in	math	or	reading,	turnaround	
time	 for	 even	 short	written	 student	work	 can	 take	weeks,	 and	 large-scale	 assessment	 for	
schools	or	districts	may	not	be	 available	until	 the	 following	 school	 year.	 Scoring	 relies	on	
instructors	 or	 trained	 scorers	 who	 can	 become	 tired	 or	 distracted	 over	 hours	 of	 scoring,	
leading	 to	 inconsistent	 results	 (Williamson	 et	 al.,	 2012).	 English	 Language	 Arts	 (ELA)	
teachers	at	 these	grade	 levels	can	also	 teach	up	 to	6	classrooms,	up	 to	200	students	at	a	
time,	 which	 combined	 with	 low	 salaries	 and	 minimal	 support	 leads	 to	 particularly	 high	
attrition,	low	job	satisfaction,	and	poor	student	outcomes	(Scherff	&	Hahs-Vaughn,	2008).			

Automated	essay	 scoring	 (AES)	aims	 to	 solve	 some	of	 these	problems.	 For	half	 a	 century,	
researchers	have	have	worked	to	reduce	the	time	burden	of	(Page,	1966).	This	goal	remains	
largely	 consistent	 today.	AES	models	are	 trained	on	a	 small	 set	of	essays	 scored	by	hand,	
and	 then	 score	 new	 essays	 with	 the	 reliability	 of	 an	 expert	 rater.	 A	 large	 body	 of	 work,	
particularly	in	the	last	decade,	has	demonstrated	this	reliability	(Shermis	&	Burstein,	2013).		

This	paper	investigates	AES	in	classrooms	over	time,	evaluating	the	relationship	of	AES	use	
to	outcomes	in	two	authentic	settings.	The	first	section	studies	the	use	of	AES	for	predicting	
outcomes	 of	 individual	 students	 in	 a	 Texas	 high	 school.	 The	 second	 section	 evaluates	
whether	AES	improves	ELA	outcomes	in	several	Maryland	middle	schools.	This	second	causal	
claim	is	a	much	more	challenging	bar	for	AES	than	scoring	accuracy	or	forecasting	ability.		

2 BACKGROUND 

AES	 has	 focused	 historically	 on	 replicating	 expert	 readers	 for	 large-scale	 scoring	 of	
thousands	 of	 essays,	 either	 for	 end-of-year	 standardized	 assessments	 or	 entrance	 exams	
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like	 the	GRE	or	 TOEFL	 (Attali	&	Burstein,	 2004).	 This	use	preferences	 interpretable	model	
features	informed	by	psychometrics,	often	representing	high-level	characteristics	of	writing	
like	 coherence	or	 lexical	 sophistication.	The	primary	goal	 is	defensibility	of	 the	underlying	
model,	known	as	construct	validity.	This	construct	validity	through	feature	choice	has	been	
emphasized	over	measuring	the	ability	to	provide	actionable	guidance	to	writers	based	on	
the	scoring.	

In	the	1990s	and	early	2000s,	classroom	technology	was	released	based	on	this	approach,	
including	ETS	Criterion,	Pearson	WriteToLearn,	and	Vantage	MyAccess.	Classroom	reviews	
of	these	products	were	mixed	at	best.	While	their	use	positively	 impacted	student	writing	
(Shermis	et	al.,	2008),	 students	 felt	negative	about	 the	experience	 (Scharber	et	al.,	2008).	
The	 most	 widely-cited	 districtwide	 study	 on	 these	 tools	 (Grimes	 &	 Warschauer,	 2010)	
described	 the	 work	 as	 “fallible”	 and	 gains	 in	 school	 outcomes	 were	 not	 demonstrated.	
Teachers	using	earlier	tools	stated	that	automated	scoring	must	be	paired	with	actionable	
next	steps	 for	writers	 (Riedel	et	al.,	2006).	Building	on	this,	work	 in	academic	settings	has	
used	AES	 to	provide	 formative	writing	 instruction	and	 feedback	 that	 students	perceive	as	
“informative,	 valuable,	 and	 enjoyable”	 (Roscoe	 et	 al.,	 2013)	 and	 which	 provides	 more	
efficient	learning	gains	than	practice	alone	(Crossley	et	al.,	2013).		

Alongside	the	emergence	of	that	research,	a	newer	generation	of	tools	has	refocused	AES	to	
prioritize	feedback	to	students.	These	include	TenMarks	Writing,	WriteLab,	Grammarly,	PEG	
Writing,	and	Turnitin	Revision	Assistant.	AES	feedback’s	impact	on	writing	quality	varies	by	
product.	 For	 instance,	 PEG	Writing	 has	 been	 shown	 to	 save	 teachers	 time	 and	 let	 them	
focus	on	higher-level	writing	skills,	but	not	to	improve	writing	quality	(Wilson	&	Czik,	2016).	
Revision	Assistant	provides	feedback	that	students	rate	as	helpful,	and	encourages	editing	
that	 improves	 quality	 across	 drafts	 (Woods	 et	 al.,	 2017).	 To	 date,	 there	 is	 little	 work	
discussing	the	longitudinal	effect	of	AES	on	classroom	instruction	during	the	school	year.	

2.1 Turnitin Revision Assistant 

This	research	focuses	on	two	school	districts	and	one	AES	technology	used	in	both,	Turnitin	
Revision	Assistant,	released	in	2016.	Prior	work	has	shown	that	the	AES	used	in	this	product	
reliably	predicts	student	writing	scores	in	line	with	the	state-of-the-art	(Shermis,	2014).		

 
Figure	1:	Automated	essay	scoring	through	Signal	Checks	in	Revision	Assistant.	
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In	 Revision	 Assistant,	 students	 request	 feedback	 from	 a	 “Signal	 Check”.	 This	 provides	
automated	 scores	 on	 rubric	 traits	 in	 a	 visual	 format	 (Figure	 1)	 and	 highlights	 up	 to	 four	
sentences	within	 the	 text	 for	 in-line	 feedback.	 The	 full	 feedback	algorithm	 is	described	 in	
Woods	 et	 al	 (2017).	 Revision	 Assistant	 also	 contains	 “Spot	 Check”	 assessments,	 which	
remove	 real-time	 feedback,	 instead	 scoring	 essays	 for	 teacher	 review.	 This	 Spot	 Check	
environment	 matches	 summative	 settings	 like	 standardized	 testing	 and	 gives	 teachers	
insight	into	student	skill	transfer	into	settings	where	real-time	support	will	not	be	available.	
Note	that	 in	this	paper,	a	“draft”	of	student	work	corresponds	to	a	Signal	Check	or	a	final	
submission;	intermediate	work	between	requests	for	feedback	is	not	a	separate	draft.		

Based	on	prior	literature,	AES	feedback	in	Revision	Assistant	should	have	a	positive	impact	
on	 classrooms.	 Students	who	 learn	 to	 think	of	writing	as	 a	process	 that	 includes	 iterative	
improvement	demonstrate	large	gains	in	transferable	skills	(Dix,	2006;	Tillema	et	al.,	2011).	
Unfortunately,	this	process	is	difficult	to	learn	and	complex	to	teach,	needing	differentiated	
instruction	across	students	and	incorporating	strategies	that	may	vary	across	tasks	(Hayes	&	
Flower,	 1980).	 Teachers	 tend	 to	 view	 this	 element	 of	 instruction	 as	 difficult	 and	 time-
consuming,	and	rarely	teach	the	revision	process	in	depth	(Graham	&	Harris,	2005).	

3 FORECASTING STUDENT OUTCOMES 

In	Texas,	student	performance	is	evaluated	on	the	State	of	Texas	Assessments	of	Academic	
Readiness,	or	STAAR	(Texas	Education	Agency,	2017).	This	 test	measures	student	progress	
against	 curricula	 aligned	 to	 Texas	 Essential	 Knowledge	 and	 Skills,	 or	 TEKS,	 standards.	
Students	in	grades	3-11	are	assigned	a	Reading	component,	while	writing	is	evaluated	in	the	
4th,	 7th,	 and	 9th-11th	 grades.	 Writing	 Scores	 are	 broken	 out	 separately	 and	 are	 also	
combined	with	 Reading	 scores	 into	 an	 overall	 ELA	 Score.	 This	 study	 evaluates	 the	 use	 of	
Revision	 Assistant	 to	 forecast	 student	 outcomes	 on	 the	 STAAR	 assessments	 on	 both	 the	
Writing	 Score	 and	 the	 combined	 ELA	 Score.	We	 find	 that	 the	 Revision	 Assistant	 forecast	
compares	 favorably	 to,	 and	 effectively	 supplements	 the	 information	 provided	 by,	 the	
existing	Fall	benchmark	currently	used	by	the	school.		

3.1 Methods 

Six	English	I	(9th	grade)	classes	from	a	large,	urban	school	district,	taught	by	four	teachers,	
were	selected	to	participate	in	the	study.	In	January,	teachers	met	and	were	trained	on	the	
AES	system,	including	the	difference	between	Signal	Check	and	Spot	Check	assignments.	A	
total	of	111	 students	were	enrolled	 in	participating	classes	during	 the	administration	of	a	
school-wide	 benchmark	 in	 fall	 2017;	 of	 those,	 99	 participated	 in	 the	 study.	 Shortly	 after	
training,	teachers	administered	an	initial,	timed	Spot	Check	assignment.	Teachers	were	then	
given	access	to	Revision	Assistant	for	three	months,	with	a	recommended	pacing	guide	that	
included	 four	 writing	 prompts	 appropriate	 to	 the	 school	 curriculum	 and	 sequencing	 of	
English	 I.	 Adherence	 to	 this	 pacing	 guide	 was	 not	 mandated.	 A	 second	 Spot	 Check	
assessment	was	 administered,	 no	more	 than	 one	month	 prior	 to	 the	 STAAR	 assessment.	
Spot	 Check	 assignments	 matched	 the	 genre	 of	 writing	 used	 in	 the	 STAAR	 assessment,	
though	 there	 were	 some	 differences.	 For	 instance,	 the	 writing	 was	 typed	 instead	 of	
handwritten,	 and	was	 not	 subject	 to	 length	 constraints	 (Texas	 students	 are	 penalized	 for	



Companion	Proceedings	8th	International	Conference	on	Learning	Analytics	&	Knowledge	(LAK18)	

Creative	Commons	License,	Attribution	-	NonCommercial-NoDerivs	3.0	Unported	(CC	BY-NC-ND	3.0)	
	 4 

exceeding	 a	 maximum	 length	 on	 standardized	 essay	 assessments).	 End-of-year	 STAAR	
testing,	administered	at	the	end	of	March	2017,	was	used	for	final	performance	evaluation.		

We	first	evaluate	the	pre-existing	benchmark	and	the	results	from	Spot	Check	assessments	
as	 individual,	 linear	 predictors	 of	 STAAR	 performance.	 Next,	 we	 fit	 a	 multivariate	 linear	
regression	 using	 four	 variables	 and	 use	 that	 regression	 to	 predict	 overall	 STAAR	 ELA	 and	
STAAR	 Writing	 performance.	 In	 this	 model,	 the	 first	 three	 variables	 are	 direct	 student	
evaluations:	 the	 pre-existing	 benchmark	 score,	 student	 performance	 on	 the	 initial	 Spot	
Check,	and	student	performance	on	the	second	Spot	Check.	The	fourth	is	a	measure	from	
Signal	Check	assignments	during	the	class	curriculum	-	specifically,	the	total	count	of	Invalid	
Drafts	submitted	by	each	student.	An	Invalid	Draft	is	a	draft	that	was	not	given	a	score,	due	
to	 being	 off-topic	 or	 in	 bad-faith.	 Detection	 of	 such	 drafts	 is	 fully	 automated	 through	
machine	 learning.	 Invalid	 drafts	 can	 represent	 student	 “churn”	 -	 an	 inability	 to	 compose	
essays	 that	meet	 assignment	 criteria	 -	 or	 student	 disengagement.	 Both	 are	 early	warning	
signs	that	can	be	addressed	through	targeted	instruction.		

We	evaluated	other	 factors	 from	formative	assignments	 in	a	Signal	Check	setting,	 such	as	
total	 number	 of	 drafts	 authored,	 growth	 (as	 measured	 by	 automated	 scoring)	 within-
assignment,	and	increases	in	word	count.	 In	a	forward	stepwise	regression,	after	 including	
variables	for	student	performance	on	Spot	Check	assignments,	none	of	these	other	factors	
improved	model	fit	or	were	significant	in	a	t-test.	They	are	not	included	in	our	results.	

3.2 Results 

The	 school	 district’s	 existing	 fall	 benchmark	 is	 reasonably	 reliable	 at	 forecasting	 student	
performance	on	the	STAAR	ELA	assessment	as	a	whole	(r	=	0.63).	However,	it	is	only	slightly	
predictive	 of	 student	 end-of-year	 STAAR	 Writing	 performance	 (r	 =	 0.26).	 As	 this	 has	
historically	been	the	only	available	benchmark,	the	school	has	had	no	access	to	actionable	
insights	on	student	writing	performance.	The	first	Spot	Check,	by	contrast,	was	moderately	
predictive	both	of	STAAR	Writing	(r	=	0.45)	and	overall	STAAR	ELA	(r	=	0.43)	performance.	

Table	1:	Accuracy	of	models	by	correlation	(r)	and	root	mean	squared	error	(RMSE)	
	 STAAR	Writing	(2-8	scale)	 STAAR	ELA	(0-68	scale)	

	 r	 RMSE	 r	 RMSE	

Existing	Benchmark	 0.26	 0.97	 0.63	 6.63	
Spot	Check	Assessment	 0.45	 0.90	 0.43	 7.70	

4-Variable	Forecast	 0.58	 0.82	 0.74	 5.42	
	
In	 the	multivariate	model,	 the	 addition	 of	 AES	 variables	 significantly	 increases	 predictive	
accuracy	over	the	benchmark	alone,	which	combine	to	explain	55%	of	student	performance	
(r2)	on	STAAR	ELA.	The	four	variables	are	all	significant	(p	<	0.01)	in	both	forecasting	models.	
This	analysis	is	summarized	in	Table	1;	scatter	plots	are	presented	in	Figure	2.	These	results	
give	evidence	of	the	value	of	AES	for	forecasting	end-of-year	student	performance.	
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Figure	2:	4-Variable	Forecast	of	scores	on	STAAR	Writing	(left)	and	STAAR	ELA	(right).	

4 IMPROVING SCHOOL OUTCOMES 

The	 next	 study	 evaluates	 a	 more	 challenging	 benchmark:	 whether	 use	 of	 AES	 within	 a	
standard	ELA	curriculum	improves	outcomes	over	time.	To	study	this,	we	conducted	a	multi-
site,	quasi-experimental	study	of	middle	schools	in	a	large,	rural	school	district	in	Maryland.	

4.1 Methods 

Teachers	 in	 the	 school	 district	were	 provided	with	 unlimited	 access	 to	 Revision	 Assistant	
during	 the	school	year.	 In	 fall	2016,	 trainings	were	conducted	on-site	 in	 large	groups,	and	
virtually	 in	 smaller	 groups.	 Staff	 provided	 resources	 to	 teachers	 that	 aligned	 content	 in	
Revision	Assistant	to	school	curricula.	No	specific	pacing	was	mandated	by	the	district.	Five	
schools	 participated	 in	 a	 treatment	 condition	using	Revision	Assistant	 in	 their	 curriculum,	
while	two	schools	in	the	district	did	not	participate.		

Maryland	 is	 a	 consortium	 member	 of	 the	 Partnership	 for	 Assessment	 of	 Readiness	 for	
College	 and	 Careers,	 or	 PARCC,	 which	 authors	 end-of-year	 assessments	 based	 on	 the	
Common	 Core	 State	 Standards	 (Maryland	 Department	 of	 Education,	 2017).	 School	
performance	was	measured	using	the	PARCC	end-of-year	assessment	for	English	Language	
Arts	 students	 in	 8th-grade,	 the	 final	 year	 before	 entrance	 to	 high	 school.	 Students	 who	
exceed	or	meet	expectations,	the	top	two	performance	categories,	are	defined	as	passing.		

Table	2:	Usage	statistics	for	five	participating	schools	in	the	2016-2017	school	year.	

School	 Signal	Checks	 #	Drafts	/	#	
Submissions	

Mean	Increase	in	
Summed	Score	

Mean	Increase	in	
Word	Count	

1	 2,011	 14.1	 5.5	 636	
2	 3,187	 9.9	 2.7	 788	
3	 596	 5.6	 1.9	 194	
4	 6,155	 11.3	 3.0	 413	
5	 4,733	 11.0	 2.1	 294	
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Table	3:	Change	in	8th-grade	ELA	pass	rates	in	treatment	schools.	
School	 2016	 2017	 Change	

1	 35.8	 49.1	 +13.3%	
2	 41.1	 49.0	 +7.9%	
3	 39.0	 45.8	 +6.8%	
4	 30.7	 35.5	 +4.8%	
5	 23.7	 22.2	 -1.5%	

Treatment	Average	(n=5)	 34.1	 40.3	 +6.2%	
Non-Treatment	Average	(n=2)	 40.4	 38.7	 -1.7%	
Maryland	Average	(n=352)	 31.8	 32.0	 +0.2%	

	

4.2 Results 

Table	2	describes	Revision	Assistant	usage	overall	within	participating	schools.	Four	schools	
show	 high	 activity	 while	 one	 shows	 lower	 levels	 of	 activity.	 In	 all	 schools,	 students	
composed	 many	 drafts	 prior	 to	 submitting	 their	 work,	 represented	 by	 the	 drafts	 per	
submission	count.	The	summed	score	is	summed	over	rubric	traits,	and	so	is	on	a	scale	of	4	
to	16.	Mean	number	of	drafts	per	student	submission,	mean	increase	in	summed	score,	and	
increase	in	word	counts	all	broadly	replicate	the	finding	from	Woods	et	al	(2017)	of	students	
receiving	automated	feedback	and	subsequently	improving	their	essays;	however,	any	one	
of	these	measures	in	isolation	is	incomplete	in	capturing	student	growth	or	essay	quality.		

Table	 3	 presents	 performance	 of	 the	 five	 schools	 in	 the	 PARCC	 exam.	 Average	 increase	
among	these	schools	was	6.2%.	By	contrast,	passing	rates	declined	 in	both	non-treatment	
schools	in	the	district,	by	0.2%	and	3.2%.	Statewide,	average	change	in	pass	rates	from	2016	
to	2017	was	an	 increase	of	0.2%	(PARCC	did	not	administer	an	exam	prior	 to	2016,	so	no	
further	historical	data	is	comparable).	The	scatter	plot	in	Figure	3	places	these	schools	in	the	
statewide	context	of	all	352	middle	schools.		

To	 evaluate	 the	 significance	 of	 the	 high	 rate	 of	 improvement	 in	 treatment	 schools,	 we	
conducted	 a	 permutation	 test,	 randomly	 sampling	 subsets	 of	 five	 schools	 from	 the	 full	
population.	 This	 lets	 us	 evaluate	 the	 probability	 of	 five	 arbitrary	 schools	 showing	 similar	
growth	by	chance,	though	it	does	not	account	for	any	potential	confounding	factors	driving	
both	testing	success	and	Revision	Assistant	usage.	These	sampled	subsets	of	schools	showed	
mean	 change	 greater	 than	 0%	 in	 51%	 of	 random	 samples,	 amounting	 to	 a	 coin	 flip.	
Permutation	subsets	of	schools	with	mean	growth	over	6.2%	were	rarer.	Subsets	matched	
or	exceeded	the	performance	observed	 in	Revision	Assistant	schools	 in	6%	of	simulations,	
indicating	a	6%	chance	of	these	results	being	observed	by	chance.		

5 DISCUSSION 

Combined,	these	two	studies	present	evidence	of	the	effectiveness	of	AES	in	school	settings.	
The	 first	 study	 demonstrates	 forecasting	 power	 of	 AES	 to	 predict	 student	 outcomes.	 The	
second	study	demonstrates	moderate	evidence	for	improved	outcomes	and	student	growth	
tied	to	the	deployment	of	an	AES	product	in	classrooms	during	a	school	year.		
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Figure	3:	Performance	growth	of	5	treatment	schools	(orange)	against	all	other	MD	

schools	(blue).	The	diagonal	dashed	line	represents	no	year-over-year	change.	

Based	 on	 these	 results,	 we	 recommend	 two	 possible	 paths	 for	 schools	 using	 AES	 for	
forecasting	purposes.	For	locations	capable	of	administering	and	collecting	a	full	benchmark	
replication	 of	 end-of-year	 assessments,	 that	 process	 continues	 to	 have	 value.	 When	
combined	with	 formative	 AES	 activity,	 the	 overall	 predictive	 accuracy	 is	 high	 for	 student	
writing	performance	and	very	high	for	overall	ELA	performance.		

However,	 the	 administration	 of	 a	 full	 benchmark	 assessment	 is	 time-consuming	 and	
distracting.	For	schools	without	the	resources	or	time	for	these	benchmarks,	the	results	 in	
this	work	suggest	that	a	single,	lightweight	AES	assessment	is	a	moderately	reliable	indicator	
on	 its	own,	and	adds	minimal	 scoring	overhead.	 In	either	case,	 these	 results	are	available	
early	in	the	school	year	and	provide	time	for	targeted	intervention.	Moreover,	the	results	of	
the	Maryland	study	suggest	a	positive	impact	of	AES	in	year-long	classroom	use.	

5.1 Limitations and future work 

Both	studies	have	significant	limitations.	Neither	study	was	subject	to	random	assignment,	
relying	 on	 volunteers	 and	 self-selection.	 Furthermore,	 teachers	 were	 not	 subject	 to	 a	
rigorous	 pacing	 guide.	 The	 impact	 of	AES	may	 therefore	be	 confounded	with	 pre-existing	
differences,	such	as	teacher	readiness	for	adoption	of	educational	technology,	variations	in	
funding	of	individual	schools,	or	preparedness	of	building-level	instructional	coaching	staff.	
Further	 research	 will	 require	 replication	 of	 these	 results	 with	 controlled	 assignment	 of	
students	 to	 conditions.	 The	 collection	 of	 student	 metadata	 will	 remove	 additional	
confounds	 and	 allow	 the	 evaluation	 of	 AES	 systems	 in	 light	 of	 recent	work	 in	 fairness	 of	
machine	learning	systems	(Leidner	&	Plachouras,	2017).	Furthermore,	future	research	could	
investigate	individual	student	outcomes,	an	even	more	granular	result	not	yet	studied	here.	
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